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Abstract 

This study presents a comprehensive approach for constructing a 3D Apparent Geological Model (AGM) by integrat‑
ing multi-resistivity data using statistical methods, supervised machine learning (SML), and Python-based modeling 
techniques. Demonstrated through a case study in the Choushui River Alluvial Fan (CRAF) in Taiwan, the methodol‑
ogy enhances data coverage significantly, from 62 to 386 points, by incorporating resistivity data sets from Vertical 
Electrical Sounding (VES), Transient Electromagnetic (TEM), and borehole information. A key contribution of this 
work is the rigorous harmonization of these data sets, ensuring consistent resistivity values across different meth‑
ods before constructing the 3D resistivity model, addressing a gap in previous studies that typically handled these 
data sets separately, either building models individually or comparing results side-by-side without fully integrating 
the data. Furthermore, python-based modeling and radial basis function interpolation were employed to construct 
the 3D resistivity model for greater flexibility and effectiveness than conventional software. Subsequently, this model 
was transformed into a 3D AGM using the SML technique. Four algorithms, namely, random forest (RF), decision tree 
(DT), support vector machine (SVM), and extreme gradient boosting (XGBoost) were implemented. Following evalu‑
ation via confusion matrix analysis, evaluation metrics, and examination of receiver operating characteristics curve, 
it emerged that the RF algorithm exhibits superior performance when applied to our multi-resistivity data set. The 
results from the 3D AGM unveil distinct resistivity anomalies correlated with sediment types. The clay layer exhibited 
low resistivity (≤ 59.98 Ωm), while the sand layer displayed medium resistivity (59.98 < ρ < 136.14 Ωm), and the gravel 
layer is characterized by high resistivity ( ≥ 136.14 Ωm). Notably, in the proximal fan, gravel layers predominate, 
whereas the middle fan primarily consists of sandy clay layers. Conversely, the distal fan, located in the western 
coastal area, predominantly comprises clayey sand. To conclude, the findings of this study provide valuable insights 
for researchers to construct the 3D AGM from the resistivity data, applicable not only to the CRAF but also to other 
target areas.
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Introduction
A comprehensive understanding of subsurface lithol-
ogy distribution holds significant importance for geo-
scientists, as it serves as the foundation for diverse 
applications, spanning from resource exploration to 
environmental protection. Traditionally, this distribution 
is derived from borehole data; however, the high costs 
associated with borehole acquisition pose challenges for 
covering extensive areas like basins or alluvial fans, limit-
ing detailed spatial lithology distribution of the area. To 
address this challenge, our approach integrates multi-
resistivity data obtained from geophysical measurements. 
This data is then utilized to construct a comprehensive 
three-dimensional (3D) resistivity model. Subsequently, 
machine learning (ML) techniques are employed to 
transform this model into a 3D apparent geological 
model (AGM), enabling a thorough lithology distribution 
analysis. In this case, these approaches are demonstrated 
in the Choushui river alluvial fan (CRAF) in Taiwan.

This area has been extensively studied, motivated not 
only by its designation as one of the major groundwater 
basins in Taiwan but also due to the presence of critical 
transportation infrastructure, such as the Taiwan high-
speed rail (THSR), which crosses the subsidence zone in 
the CRAF. Land subsidence poses a significant risk to the 
THSR, as uneven ground settling can lead to infrastruc-
ture damage and potential operational disruptions (Chen 
et al. 2021; Hsu 1998; Huang et al. 2024). Previous studies 
have examined the role of subsurface conditions in this 
phenomenon. For instance, Liu et al. (2001) investigated 
the effect of clay dehydration on land subsidence in the 
coastal area of the CRAF. Liu et al. (2004) used leveling 
surveys and groundwater monitoring wells to investi-
gate subsidence, linking layer compression to ground-
water extraction, particularly in clayey and sandy layers. 
Hung et  al. (2009) suggests that the land subsidence in 
the region is linked to the compaction of clay materi-
als at various depths, where 70% of subsidence (> 3 cm/
year) occurred along the THSR route, with a peak rate of 
8.2 cm/year Lu et al. (2016). Used kriging to analyze sub-
sidence trends, noting a shift from coastal to central areas 
Chu et  al. (2021). Developed a spatial regression model 
to map subsidence bowls. The study revealed that the 
subsidence bowl was found in the inland area of Yunlin, 
which was consistent with the observed subsidence bowl 
location. Based on these studies, it can be concluded 
that subsidence is strongly correlated with subsurface 
compaction, particularly in clay-rich layers, since clays 
are known to be highly compressible, especially when 
affected by groundwater extraction and changes in mois-
ture content, which makes them a significant factor in 
subsidence processes (Lin et  al. 2016; Liu et  al. 2001). 
Thus, understanding the distribution of these sediments, 

especially in a 3D context, is essential for effective 
research, monitoring, and management.

Despite extensive research, a significant gap remains 
in developing a comprehensive 3D Apparent Geologi-
cal Model (AGM) for the subsurface in this area. Cur-
rent subsurface models rely heavily on 1D resistivity data 
from borehole records, which are spaced between 1 and 
17 km apart, limiting their ability to capture detailed sub-
surface features, particularly in large areas like the CRAF 
(Cheng & Hsu 2021; GSMMA 2023). While borehole 
data provide precise lithological information at specific 
points, they lack the spatial resolution needed to detect 
lateral variations, leaving critical gaps in understand-
ing the subsurface. Several attempts have been made to 
utilize resistivity data in studying this area. For exam-
ple, Yang and Lee (2002) mapped apparent resistivity 
using direct current resistivity sounding, and Kassie et al. 
(2023) used 1D Transient Electromagnetic (TEM) data 
to explore subsurface structures for hydrogeological pur-
poses. However, these studies fell short of constructing a 
comprehensive 3D resistivity model, stopping at distri-
bution mapping without fully integrating resistivity data 
with borehole information to link resistivity values with 
lithology. In terms of 2D models, the existing 2D hydro-
geological models, such as those provided by GSMMA, 
rely on sparsely distributed borehole data and often 
use manually drawn cross sections to connect points 
between profiles. This manual process can lead to mis-
alignments between cross sections, further reducing the 
accuracy of the models. The limitations of both 1D and 
2D approaches highlight the need for a more advanced 
3D model that can accurately represent both vertical 
and lateral subsurface variations (Chiang 1999; GSMMA 
2023). By incorporating additional geophysical measure-
ments and developing a comprehensive 3D AGM, we aim 
to address these challenges and provide a more detailed 
and consistent representation of lithological distribution 
across the region.

Constructing the 3D model is crucial, as it offers sev-
eral advantages compared to one-dimensional (1D) and 
2D models. Specifically, it enables the visualization of 
the geometric distribution of subsurface features, fully 
capturing the complexity of the geological subsurface. 
In addition, it greatly facilitates enhanced interpreta-
tion, providing a clearer understanding of the 3D spatial 
relationships among various types of subsurface data. 
Furthermore, when communicating with non-technical 
audiences, 3D models can often prove to be more effec-
tive than traditional maps or 2D cross sections (Aldiss 
et al. 2012; Rabeau et al. 2010; Witter and Melosh 2018).

Over time, several studies have utilized geophysical 
measurements, especially geoelectrical methods to con-
struct 3D models, demonstrating their effectiveness in 
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different contexts. For instance, Cardarelli and De Donno 
(2017) employed 1D, 2D, and 3D electrical resistivity 
methods to estimate bedrock depth. The 3D resistivity 
model was constructed from four parallel 2D Electrical 
Resistivity Imaging (ERI). In the same year, Chabaane 
et  al. (2017) combined both Vertical Electrical Sound-
ing (VES) and 2D ERI methods for geothermal ground-
water characterization. Osinowo and Falufosi (2019) 
conducted research aimed at examining the foundations 
before construction by creating a 3D model through the 
amalgamation of multiple 2D resistivity profiles. Arow-
oogun and Osinowo (2021) presented a case study on the 
use of a 3D resistivity model from 1D VES data to assess 
groundwater potential and aquifer protective capacity. A 
recent study by Abu Rajab et al. (2023) constructed a 3D 
resistivity model by interpolating 1D Transient Electro-
magnetic (TEM) data and combined it with ERI results to 
observe the impact of the seawater intrusion.

Despite various attempts outlined above to construct 
3D models using geoelectrical methods, persistent chal-
lenges demand attention, including limited data coverage 
for extensive studies, software limitations in managing 
model boundaries, and the need for a method to trans-
form the 3D resistivity model into a 3D AGM. To tackle 
the issue of limited data coverage, we initiated the col-
lection of three additional measurements, such as VES, 
TEM, and Normal Borehole Resistivity (NBR) data from 
boreholes, along with lithological information, where 
data harmonization is performed to integrate these data 
sets. In response to the limitations of traditional soft-
ware, characterized by its stiffness and tendency to gen-
erate square models even in data-sparse regions, we 
introduced a Python-based modeling and visualization 
approach to enhance model realism. Furthermore, to 
transform the 3D resistivity model into a 3D AGM, we 
shifted our focus from employing a conventional method 
solely reliant on direct visual comparison of borehole 
lithology sections with resistivity data to adopting a 
Supervised Machine Learning (SML) technique. This 
technique utilizes statistical methods and borehole infor-
mation as ground truth data, offering a more advanced 
approach. Although this technique has been success-
fully applied in various studies using geophysical data 
sets (Bressan et  al. 2020; Dong et  al. 2023; Kumar et  al. 
2022; Marzán et al. 2021; Piegari et al. 2023; Puntu et al. 
2023; Puntu et al. 2021; Tilahun & Korus 2023), very few 
studies have implemented this approach for 3D mode-
ling. Therefore, our study aims to fill this gap by applying 
it to our 3D data set. In this case, we utilized four SML 
algorithms, including decision tree (DT), random forest 
(RF), support vector machine (SVM), and extreme gradi-
ent boost (XGBoost), and compared them to identify the 
most suitable algorithm for our data sets.

In summary, the objective of this study is to build a 3D 
AGM by integrating multi-resistivity data and utilizing 
statistical methods, machine learning techniques, and 
Python-based modeling and visualization tools mark-
ing a transition from traditional methodologies to more 
advanced approaches.

Materials and methods
Background of the study area
The present study is located in the Choushui River Allu-
vial Fan (CRAF) in Central Taiwan, as depicted in Fig. 1. 
The study area is demarcated by a bold red line. The 
CRAF covers approximately 2000 km2 of the Chang-
hua and Yunlin Counties and is divided into three sec-
tions: proximal fan, mid-fan, and distal fan. This area is 
a Holocene deposit consisting of clay, sand, and gravel 
(Hung et al. 2009; Liu et al. 2002). Figure 2 shows a con-
ceptual hydrogeological profile (A–A’) parallel to the 
Choushui River, it was constructed from the available 
borehole data from the Haifeng borehole on the west to 
the Chukou borehole on the east. This conceptual model 
was obtained from the Geological Survey and Mining 
Management Agency (GSMMA) of Taiwan. The west-
ern section is near the coastal area, whereas the east-
ern area with higher altitude is near the Douliu Hill and 
Bagua Tableland. In general, it shows that the proximal 
fan is mainly composed of gravel and sand with high 
permeability, whereas the middle and distal fans are 
primarily composed of clay and fine sand with low per-
meability. The CRAF is located at the interface between 
the mountains and the coastal plain and surrounded by 
natural geographical boundaries, including the Wu River 
to the north, the Bagua Tableland and the Douliu Hill to 
the east, the Beigang River to the South, and the Taiwan 
Strait to the west (GSMMA 2023).

The geology of the eastern CRAF is complex and 
includes various formations, such as terrace deposits, lat-
eritic terrace deposits, the Nanchuang Formation (alter-
nation of sandstone and shale), the Cholan Formation 
(interbeds of sandstone, mudstone, and shale), the Touk-
oshan Formation (TF), and the Kueichulin Formation 
(KF). The TF can be divided into four types: TFa–TFd, 
as shown in Fig. 1. TFa consists of gravel with sandstone 
lentils intercalated with thick-bedded sandstone with 
mudstone and gravel lentils, TFb consists of gravel with 
sandstone lentils, TFc consists of sandstone, mudstone, 
and shale, and TFd consists of sandstone, siltstone, mud-
stone, and sandstone interbedded with mudstone. The 
KF can be divided into three types: KFa–KFc, as shown in 
Fig. 1. KFa is composed of muddy sandstone with shale, 
KFb is composed of shale with intercalated sandstone, 
and KFc is composed of muddy sandstone and alteration 
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Fig. 1  Study area is situated in the Choushui River Alluvial Fan in central Taiwan, outlined by a bold red line. The CRAF encompasses around 2000 
km2 within Changhua and Yunlin Counties  (Modified from GSMMA (2023)

Fig. 2  Conceptual hydrogeological profile (A–A’), redrawn from GSMMA (2023)



Page 5 of 23Puntu et al. Geoscience Letters           (2024) 11:54 	

of sandstone and shale (Chu et al., 2021; GSMMA 2023; 
Hung et al. 2009; Liu et al. 2002; Lu et al. 2020).

The geoelectrical data
Previous geological and hydrogeological surveys in the 
CRAF have primarily relied on individual data sets, such 
as borehole information, TEM or VES (Kassie et al. 2023; 
Tsai et  al. 2019; Yang and Lee 2002), without integrat-
ing these data sets comprehensively. This fragmented 
approach limits spatial coverage and reduces the abil-
ity to accurately characterize subsurface heterogene-
ity. Specifically, without joint comparison, these surveys 
fail to resolve inconsistencies between different data 
sources, such as variations in resistivity measurements 
across methods. In this study, we utilized three geophysi-
cal methods: VES, TEM, and NBR. Without integration, 
significant geological features, such as lithological transi-
tions, could be misinterpreted or overlooked. Joint inter-
pretation allows for better calibration and validation of 
resistivity data against borehole lithological information, 
leading to more accurate and cohesive 3D Resistivity and 
Apparent Geological Models (AGMs). This shortcom-
ing highlights the need for a multi-resistivity data inte-
gration approach, as proposed in this study, to provide a 
more accurate representation of subsurface conditions. 

Figure 3 illustrates the distribution of geoelectrical meas-
urements, where the study area is indicated by a red line, 
the THSR route by a bold black and white line, the town-
ship by a black pentagon, and the borehole (NBR), VES, 
and TEM by an orange circle, green triangle, and blue 
rectangle, respectively.

Normal borehole resistivity (NBR)
We obtained a total of 62 borehole data located in the 
southern region of the CRAF, which were retrieved from 
the GSMMA database (GSMMA 2023). From this data 
set, we exclusively selected 54 borehole records within 
the study area boundary. Subsequently, the Normal Bore-
hole Resistivity (NBR) data was extracted and inverted 
to derive the true resistivity distribution, which served 
as the basis for constructing a 3D Apparent Geological 
Model (AGM). These borehole data sets were serving as 
the ground truth by providing both resistivity log data 
and sediment type information from the core samples.

Vertical electrical sounding (VES)
A total of 221 VES data points was derived from the 
GSMMA report within the study area (Dong et al. 1996; 
Tsai et al. 2019). To enhance the inversion result, we con-
ducted a re-analysis of the VES raw data in python using 

Fig. 3  Distribution of geoelectrical data within the study area, with boreholes, VES, and TEM represented by orange circles, green triangles, and blue 
rectangles, respectively
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simPEG, an open source python package designed for 
geophysical applications that provides simulation and 
gradient-based parameter estimation. There are three 
main steps in simPEG, including inputs (Data, Uncer-
tainty estimates, governing equation, and prior knowl-
edge), inversion implementation (Forward simulation 
and inversion components), and evaluation (evaluate and 
assess results). The inverse analysis of VES data inher-
ently involves uncertainties stemming from measure-
ment noise, data quality, and the non-uniqueness of 
geophysical inversion results. In this study, we addressed 
these uncertainties by conducting a re-analysis of the 
VES raw data using the simPEG package in Python. 
SimPEG allows for uncertainty estimates to be explicitly 
incorporated during the inversion process. Specifically, 
the inputs for simPEG include the raw data, estimates 
of uncertainty, governing physical equations, and prior 
geological knowledge, which together help constrain the 
inversion and reduce uncertainty. For further details on 
SimPEG, please refer to Cockett et al. (2015) and Heagy 
et al. (2017).

Transient electromagnetic (TEM)
We deployed 111 TEM sounding points in the study area 
using the FASTNAP system with a transmitter loop size 
of 50 m × 50 m and a receiver loop size of 3 m × 3 m. The 
system continuously operates at low, medium, and high 
modes by injecting a current of 0.34–30A. Several pulses 
are transmitted, and response signals are enhanced 
by averaging the records at each time slot. The differ-
ent mode records are stitched together, producing the 
voltage transient decay curve. Resistivity and thickness 
are calculated based on gradient-based inversion (Kas-
sie et al. 2023). To build the 1D model, we utilized prior 
information, i.e., resistivity log and vertical electrical 
sounding data, as a guide and used MODEL 3.1 software 
to invert the data (Sharlov 2015).

The resistivity data harmonization
Each geoelectrical method (VES, NBR, and TEM) gener-
ates a 1D resistivity–depth model (Fig. 4). Traditionally, 
these data sets are directly compared and combined to 
construct a 3D model, with borehole information used 
for direct interpretation. However, due to inherent dif-
ferences in measurement techniques, each method oper-
ates on a different scale despite measuring resistivity. To 
enable meaningful comparisons and integrated analysis, 
a crucial preprocessing step known as data harmoniza-
tion was implemented prior to lithology analysis and 
3D model construction. In general, data harmonization 
refers to the process of combining data from different 
sources or heterogeneous data into a cohesive data set by 
adjusting parameters such as measurement units, scales, 

maximum and minimum boundaries, or data formats 
(Cheng et al. 2024; Kumar et al. 2021; Nan et al. 2022). In 
this case, it involved adjusting the scale of resistivity data 
from each method to a common reference scale using 
the feature scaling method, ensuring compatibility and 
consistency across data sets. Harmonizing the resistiv-
ity data facilitated effective combination and integration 
of disparate measurements, providing a comprehensive 
understanding of subsurface properties and enhancing 
the accuracy of subsequent geological interpretations. To 
achieve this, several steps are required.

Initially, we adjusted the sampling rate of each one-
dimensional data set, spacing them at 1-m intervals 
employing the Piecewise Cubic Hermite Interpolating 
Polynomial (PCHIP) method, and restricted our usage to 
data reaching a depth of 200  m (Chapra 2012; Rabbath 
and Corriveau 2019). Following this, feature scaling was 
performed using the normalization technique known as 
Min–Max Re-scaling. This technique linearly transforms 
the original data range to maintain relationships within a 
predetermined boundary (Morrow 2020; Patro and Sahu 
2015), expressed as

Here i represents the specific data set (VES, NBR, or 
TEM) for which the scaling is being applied. ρi′ repre-
sents the scaled value of resistivity from the data set i. ρi 
denotes the original resistivity data point from the data 
set i. min (ρi) and max (ρi) are the minimum and maxi-
mum absolute value of resistivity in the data set i. a and b 
are the minimum and maximum absolute value of resis-
tivity in the VES data set. All resistivity data sets were 
transformed based on the VES resistivity range within 
the study area, a process we termed data retrieval. This 
retrieval normalized resistivity data to a range of 0–1, 
which was then rescaled to match the VES resistivity 
values using the sci-analysis package in Python (Mor-
row 2019). This efficient Python package facilitates 
rapid exploratory data analysis (EDA) by abstracting the 
underlying SciPy, NumPy, and Matplotlib commands. 
Furthermore, we utilized seaborn, a Python-based data 
visualization library to visualize the results (Waskom 
2021). Figure  5 explains the workflow of this study, 
streamlining the methodology process.

The establishment of a 3D resistivity model
Previous studies predominantly utilized conventional 
software for this task, facing limitations that resulted in 
a fixed structure. These constraints stemmed from the 
software’s inability to handle model boundaries effec-
tively. For instance, despite data distribution extending 
beyond square-shaped areas, the outcomes from the 3D 

(1)ρ′
i = a+

(ρi −min (ρi))

max (ρi)−min (ρi)
(b− a)
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model typically conform to a square shape. Therefore, 
we employed PyVista, a Python-based visualization to 
develop the 3D resistivity model (Sullivan and Kaszynski 
2019). PyVista is a pythonic framework that provides a 
high-level API to the Visualization Toolkit (VTK), includ-
ing mesh data structures and spatial data set filtering 

algorithms. Its 3D plotting capabilities are intended to 
handle huge and complicated data geometries, simpli-
fying the visualization process. Rather than relying on 
traditional VTK interfaces, PyVista utilizes NumPy and 
direct array access to interface with VTK. This approach 
facilitates rapid prototyping, analysis, and integration of 

Fig. 4  Processed 1D NBR, VES, and TEM data
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spatially referenced data sets through a well-documented 
interface. Figure 6 depicts the methodology employed for 
the construction of a three-dimensional (3D) model.

In this study, we utilized PyVista to automate the mesh 
generation procedure for our computational model. Fig-
ure  7 depicts the mesh dimensions for the Changhua 

and Yunlin models, which were established according 
to the parameters outlined in Table  1. The boundary of 
the model was determined using a polygon derived from 
the coverage data, encompassing an area of 852 km2, and 
1174 km2 for the Changhua and Yunlin models, respec-
tively. These polygons served as an effective constraint 

Fig. 5  Workflow of this study, streamlining the methodology process

Fig. 6  Methodology employed for the construction of a three-dimensional (3D) model
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to prevent model exaggeration and over-interpolation in 
regions without data. It restricted the 3D shapes within 
the coverage area while removing any meshes outside 
of it from the analysis. For the spatial interpolation of 
resistivity data, we employed the Radial Basis Function 
Interpolation (RBFI) technique, specifically using the lin-
ear basis function. This method was chosen for its ver-
satility in handling irregularly spaced data and its ability 
to generate smooth, continuous interpolation surfaces, 
making it ideal for subsurface resistivity modeling. A key 
hyperparameter in this process is the smoothing factor, 
set to 500 in this study. The smoothing factor controls 
the trade-off between accurately fitting the data points 

Fig. 7  Mesh dimensions for the Changhua and Yunlin models

Table 1  Parameter of the 3D model for the (a) Changhua and 
(b) Yunlin area

Parameter Changhua Yunlin

dx (Horizontal X) 1000 m 1000 m

dy (Horizontal y) 1000 m 1000 m

dz (Vertical) 10 m 10 m

Depth 200 m 200 m

Area 852 km2 1174 km2

Perimeter 132 km 146 km

Number of cells without boundary: before 36,800 42,120

Number of cells with boundary: after 17,140 23,480
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and ensuring a smooth interpolation surface. By using a 
higher smoothing value, we mitigated the risk of overfit-
ting to noisy or sparse data sets, leading to a more gen-
eralized and robust model. The use of RBFI with these 
strategies allows for the generation of smooth and con-
tinuous 3D resistivity models that reflect both vertical 
and horizontal variations in the subsurface. By trans-
forming the resistivity model into a 3D Apparent Geolog-
ical Model (AGM) using Supervised Machine Learning 
techniques, we achieved a comprehensive representa-
tion of the subsurface, providing insights that would be 
difficult to detect using 1D or 2D models. For a compre-
hensive description of the interpolation procedure with 
RBFI, we refer readers to Carr et al. (2001), Shi and Wang 
(2021), and Chen et al. (2024). Afterwards, the Paraview 
software was employed to generate visual representations 
of the 3D model by using the output VTK file. It is an 
open-source multiple-platform application for interactive 
scientific visualization (Ahrens et al. 2005).

The establishment of a 3D apparent geological model 
with supervised machine learning
After obtaining the 3D resistivity model, Supervised 
Machine Learning (SML) techniques were used to con-
vert this model into a 3D Apparent Geological Model 
(AGM). SML is a computational approach that involves 
classifying or predicting data based on prior informa-
tion, enabling the identification of overarching patterns 
and hypotheses through the training data to predict the 
characteristics of test data (Singh et al. 2016; Sotomayor 

et al., 2023). Several steps are involved in establishing the 
3D AGM, as shown in Fig. 8.

First, both ground truth data and geophysical data sets 
were prepared. The ground truth data, derived from 54 
borehole records within the study area, includes sedi-
ment type and resistivity log data. The resistivity data 
from these boreholes were subjected to various proce-
dures such as inversion, resampling, harmonization, and 
labeling. During the labeling phase, sediment type labels 
were assigned to the resistivity data, which acted as the 
target for SML process. This labeling was informed by 
details from the resistivity log and borehole sediment 
type, facilitating direct comparison and correlation 
across three categories: clay, sand, and gravel to the resis-
tivity value. Following this, Exploratory Data Analysis 
(EDA) was conducted to detect any missing data or out-
liers. Subsequently, the data was divided into train-test 
partitions, with 70% allocated for training and 30% for 
testing.

According to Archie (1942), the relationship of the in-
situ resistivity of saturated sedimentary rock, its porosity, 
and pore-water resistivity can be expressed as follows:

where ρb denotes bulk resistivity, a represents the tortu-
osity factor, ρw is pore-water resistivity, ∅ signifies poros-
ity, and m is the cementation exponent specific to the 
rock.

This equation highlights that the measured bulk resis-
tivity is influenced by the resistivity of pore water. Con-
sequently, if pore water resistivities vary widely, the bulk 

(2)ρb = a · ρw · ∅
−m

Fig. 8  Supervised machine learning (SML) procedure to convert the resistivity model into an apparent geological model
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resistivity of the same sediment type can fluctuate signifi-
cantly, regardless of the sediment type. Conversely, when 
the resistivity of groundwater is similar, the resistivity 
distribution within sediment tends to exhibit a consistent 
pattern, reflecting the different sediment types present.

To assess the impact of groundwater resistivity on our 
analysis, we present in Fig. 9, depicting the distribution of 
groundwater resistivity gathered from observation wells 
in the CRAF. The figure indicates that gravel (cyan), sand 
(green), and clay (orange) sediments can be roughly dif-
ferentiated based on their measured resistivity. This dif-
ferentiation is facilitated by the fact that groundwater 
resistivities (blue) primarily fall within the range of 5–50 
Ωm, akin to the resistivity of mud sediments, and do not 
exert a significant influence on the classification analy-
sis. Thus, the influence of groundwater resistivity on our 
study is deemed negligible. Similar trends were observed 
in the earlier study by Chang et al. (2024), which was con-
ducted in a different basin area in Taiwan, specifically the 
Yilan basin, where the groundwater resistivity ≤ 50 Ωm.

Second, four SML algorithms, specifically decision 
tree (DT), random forest (RF), support vector machine 
(SVM), and extreme gradient boosting (XGBoost) were 
employed to predict the sediment type of the test data. 
The selection of these algorithms was based on their 
suitability for handling geological and geophysical data, 
as well as their varying strengths in classification tasks. 
Ensemble methods like random forest and XGBoost were 

chosen for their ability to manage complex data sets and 
reduce overfitting through the combination of multiple 
decision trees, which leads to more robust predictions. 
Decision Tree was included for its simplicity and ease 
of interpretation, making it useful for understanding the 
decision process. Support Vector Machine was selected 
for its potential to handle non-linear relationships in the 
data. These models were compared to identify the most 
appropriate algorithm for the resistivity data set. Random 
forest ultimately performed best due to its accuracy and 
reliability across multiple performance metrics (Brei-
man 2001; Chen & Guestrin 2016; Quinlan 1986). A brief 
description of these algorithms is described below:

a.	 Decision tree (DT)

	 The Decision Tree (DT) algorithm is a method in 
SML that operates akin to an inverted tree structure. 
It is a non-parametric approach used for classifica-
tion and regression tasks. As implied by its name, the 
algorithm employs a tree-like flowchart structure to 
display predictions generated by a sequence of splits 
based on features. It commences at a root node and 
concludes with decisions at the leaves. The hierar-
chical structure comprises three key components: 
the root node which is the starting point of the DT, 
branches also known as sub-trees, delineate specific 
decision paths and outcomes within the tree, and leaf 

Fig. 9  Statistics for measured bulk resistivity of various sediment types from borehole logging and groundwater resistivity measurements
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nodes which is the points within the tree where fur-
ther division ceases, typically signifying the ultimate 
classification or outcome. In essence, a DT algorithm 
can be understood as a sequence of IF-ELSE state-
ments constructing the entire tree from the root 
node to the leaf node (Kumar et  al. 2022; Quinlan 
2014; Rokach & Maimon 2005).

b.	 Random forest (RF)

	 The random forest (RF) algorithm is a type of ensem-
ble learning method that utilizes multiple decision 
trees as predictors. Initially, this algorithm devel-
oped by Ho (1995) that later modified by Breiman 
(1996) based on the bagging or bootstrap aggregation 
approach. In this procedure, a significant number of 
trees are generated, and each tree contributes to the 
final prediction by voting for the most commonly 
predicted class. Through the implementation of the 
bagging method in RF, it enhances overall accuracy 
and mitigates overfitting by utilizing the average of 
predictions obtained from multiple decision trees. 
(Breiman 2001).

c.	 Support vector machine (SVM)

	 The support vector machine (SVM) is a useful tech-
nique in SML, extensively applied in both classifica-
tion and regression tasks. It employs a hyperplane to 
effectively divide the attribute space, enabling opti-
mal separation between instances of different classes 
or class values. The data points lying closer to the 
hyperplane on either side are referred to as support 
vectors, and the distance between these vectors is 
termed as the margin or street. A hyperplane with a 
large margin or street is deemed to be a good classi-
fication, while a small margin indicates a poorer clas-
sification that requires further parameter tuning. In 
short, this approach aims to maximize the minimum 
distance or margin from the hyperplane to the near-
est data point (Lorena et al. 2011; Singh et al. 2016; 
Vapnik 1999).

d.	 Extreme gradient 	  (XGBoost)

	 The Extreme Gradient Boosting (XGBoost) tech-
nique is an effective machine learning method 
employed in SML tasks such as regression and clas-
sification. It belongs to the ensemble learning family, 
especially to gradient boosting frameworks. XGBoost 
builds a predictive model by iteratively combining 
the predictions of numerous individual models, typi-
cally decision trees. This iterative process involves 

sequentially adding weak learners to the ensem-
ble, with each new learner aiming at correcting the 
errors made by the previous ones. To reduce overfit-
ting and complexity, a regularization term is included 
alongside the loss function (Chen and Guestrin 2016; 
Kumar et al. 2022).

Third, the trained models were used to predict the 
geophysical data sets, and their performance was evalu-
ated using appropriate metrics. By comparing the results 
of several models, we identified the most suitable algo-
rithm for prediction. To further optimize performance, 
we fine-tuned the models using a systematic grid search 
approach, which tested a predefined range of hyperpa-
rameters for each algorithm to find the best combina-
tion. Grid search cross-validation (CV) was employed 
to prevent bias from specific train-test splits by evalu-
ating the model over multiple training and validation 
sets (Berrar 2019; Bressan et al. 2020; Refaeilzadeh et al. 
2009). The average performance across these splits was 
used to identify the optimal model parameters, which 
are the hyperparameters that result in the best balance 
between accuracy and generalization on unseen data, 
minimizing overfitting. For the Decision Tree model, we 
fine-tuned parameters such as the criterion (entropy), 
which determines how to split the data at each node, 
the maximum depth, which controls how deep the tree 
can grow, the minimum samples per leaf, which ensures 
that leaf nodes are not created with too few data points, 
and the minimum samples per split, which specifies the 
minimum number of samples required to split a node. 
These parameters helped balance model complexity and 
prevent overfitting (Kumar et  al. 2022; Quinlan 1986; 
Rokach and Maimon 2005). In the random forest model, 
we optimized the number of estimators (trees), which 
improves accuracy but increases computation time, and 
the maximum depth, which controls tree complexity and 
prevents overfitting (Breiman 2001). For the Support 
Vector Machine (SVM), we adjusted the kernel (RBF) 
to transform the input data for non-linear separability, 
gamma, which controls how far the influence of a single 
training example reaches, the regularization parameter 
(C), which manages the trade-off between maximizing 
the margin and minimizing classification error, and the 
maximum iterations, which controls how many iterations 
the optimization algorithm is allowed to perform. These 
adjustments ensured the SVM model could find the opti-
mal decision boundary without overfitting (Lorena et al. 
2011; Pedregosa et al. 2011; Singh et al. 2016). Finally, in 
XGBoost, we fine-tuned the number of estimators, which 
determines the number of boosting rounds, the learning 
rate (eta), which controls how much the model is updated 
with each boosting round, and the maximum depth, 
which limits the depth of each tree to prevent overfitting 
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while still capturing important patterns in the data (Chen 
and Guestrin 2016; Kumar et  al. 2022). By optimizing 
these parameters, we ensured that each model was both 
accurate and generalizable, leading to robust predictions 
in our resistivity data set. Table 2 details the final hyper-
parameters selected for each.

a.	 Confusion matrix

	 The confusion matrix illustrates the summary of 
predictions in a matrix format, reveals the accuracy 
of predictions for each class and identifies any class 
confusion within the model. This matrix displays the 
TP, FP, FN, and TN values for the respective classes, 
highlighting correct and incorrect classifications 
(Bajaj & Sinha 2022; Tiwari 2022).

b.	 Evaluation metrics

	 Various evaluation metrics were also computed in 
order to measure the model performance, such as 
accuracy, F1 score, precision, and recall. Accuracy 
represents the proportion of correctly classified 
examples, while the F1 score is a weighted harmonic 
mean of precision and recall. Precision measures the 
proportion of true positives among instances classi-
fied as positive, whereas recall quantifies the propor-
tion of true positives among all positive instances in 
the data set. The equations utilized for computing the 
performance metrics are expressed as follows (Bres-
san et al. 2020; Kumar et al. 2022):

(3)Accuracy =
TP+ TN

TP+ FN+ TN+ FP

where TP, TN, FP, and FN represent true positives, 
true negatives, false positives, and false negatives, 
respectively.

c.	 Receiver operating characteristics (ROC) curve
	 Receiver Operating Characteristics or ROC curve is 

graphically depicting a classification model’s perfor-
mance. It is worth  noting that the ROC curve pro-
vides insights into the trade-off between sensitivity 
and specificity for different threshold values, helping 
assess the model’s discriminatory power and deter-
mining an optimal threshold for classification. This 
plot showcases two parameters: the true positive rate 
(TPR) and the false positive rate (FPR) that defined as 
follows (Bressan et al. 2020; Kumar et al. 2022; Yang 
& Berdine 2017):

An ideal classification of the desired class by the ML 
algorithm is shown by a ROC curve that rapidly ascends 
from the origin to (0,1) and becomes flat. Points in the 
upper left corner of the ROC spectrum indicate greater 
performance, whereas curves closer to the diagonal line 
indicate poor classifier performance.

Results
The resistivity data harmonization
Despite conducting all measurements within the same 
research area and limiting the data to a depth of 200 m, 
significant discrepancies were observed in the upper 
and lower bounds of resistivity values, underscoring 
the necessity for data harmonization. Figure 10 depicts 
the result of employing min–max scaling for resistiv-
ity data harmonization, with Fig.  10a showcasing the 
data before harmonization and Fig.  10b illustrating 
the data after harmonization. Before data harmoniza-
tion, the grand mean and median resistivity values were 
48.98 Ωm and 45.71 Ωm. The mean resistivity values 
for TEM, VES, and NBR measurements were 42.67 

(4)F1 =
2× Precision× Recall

Precision+ Recall

(5)Precision =
TP

TP+ FP

(6)Recall =
TP

TP+ FN

(7)TPR =
TP

TP+ FN

(8)FPR =
FP

FP+ TN

Table 2  Hyper-parameters considered for DT, RF, SVM and 
XGBoost algorithms

No SML algorithm Tuned hyperparameters

1. Decision tree (DT) • Criterion: Entropy
• mim_sample_leaf: 2
• Min_sample_split: 5
• Max_depth: 10

2. Random forest (RF) • N_estimators: 100
• Max_depth: 10

3. Support vector machine (SVM) • Kernel: ‘rbf’
• Gamma: 0.10
• C: 10
• Max_Iter: 100

4. XGBoost • N_estimators: 100
• η : 0.3
• Max_Depth: 6
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Ωm, 57.54 Ωm, and 48.98 Ωm, respectively. After data 
standardization, the grand mean and median resistiv-
ity values shifted to 56.23 Ωm and 55.95 Ωm. The mean 
resistivity values for TEM, VES, and NBR measure-
ments became 52.48 Ωm, 57.54 Ωm, and 58.25 Ωm, 
respectively. In this study, we opted to harmonize the 
resistivity data primarily based on VES measurements 
for two reasons. First, VES data exhibits both lower 
and higher boundaries of resistivity values compared to 
NBR and TEM data, registering at 1.02 Ωm and 2512 
Ωm, respectively. Second, VES data offers the most 
densely distributed measurements among the three 
methods.

The 3D resistivity model
Figure  11 presents the 3D resistivity model covering 
the entirety of the Choushui River Alluvial Fan (CRAF), 
including the Changhua region to the north and the Yun-
lin region to the south. Figure 11a depicts the 3D compact 
resistivity model, while Fig. 11b shows the 3D cross-sec-
tional resistivity model. The model reflects the topogra-
phy of the study area, with higher elevations observed in 
the eastern portion near the tableland and hills, gradu-
ally decreasing towards the western coastal region. This 
elevation gradient is based on denser field measurements 
from VES, TEM, and NBR data points. In addition, the 
model’s shape delineates the study area’s boundary, which 
was carefully defined to include areas with sufficient data 
coverage while excluding regions without data to prevent 
bias and overextrapolation, as discussed in Sect.  "The 

establishment of a 3D resistivity model". This approach 
ensures a more realistic representation compared to 
conventional 3D blocky models typically in rectangular 
shapes. Overall, the resistivity values range from 1.02 Ωm 
to 2512 Ωm, with higher resistivity values predominating 
in the eastern region, particularly in the proximal areas of 
the CRAF such as the Bagua tableland and Douliu hill. In 
contrast, resistivity values gradually decrease towards the 
western coastal areas, where lower values are predomi-
nantly observed.

Validation and evaluation results
Confusion matrix analysis, evaluation metrics and the 
Receiver Operating Characteristic (ROC) curve were 
employed to assess the final performance of the SML 
models on the testing data set. The results of these evalu-
ations are outlined below:

a.	 Confusion matrix result

	 Figure 12 illustrates the confusion matrices for each 
Supervised Machine Learning (SML) algorithm, pro-
viding insight into their classification performance on 
the testing data set. In the confusion matrix, columns 
correspond to predicted values, and rows signify the 
true values. The main diagonal, represented by green 
shades, indicates correct predictions, with darker 
shades reflecting a larger number of correctly clas-
sified instances. Random forest (RF), decision trees 
(DT), and XGBoost exhibit high accuracy, with over 
90% of predictions falling on the main diagonal. In 

Fig. 10  Results of min–max scaling for resistivity data harmonization: a data before harmonization and b data after harmonization
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contrast, the Support Vector Machine (SVM) shows 
a correct prediction rate of approximately 55.8% for 
clay, while 44.2% of the clay data is misclassified as 
sand.

b.	 Evaluation metrics result

	 The evaluation metrics for the machine learning 
models, as shown in Table 3, demonstrate that ran-
dom forest (RF) achieved the highest overall perfor-
mance, with an accuracy, F1 score, precision, and 
recall of 0.952 across all metrics. Decision Tree (DT) 
followed closely with an accuracy and F1 score of 

Fig. 11  3D resistivity model of the Choushui River Alluvial Fan (CRAF): a 3D compact resistivity model and b 3D cross-sectional resistivity model
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0.950, indicating robust and balanced performance. 
XGBoost also performed well, with accuracy and 
F1 score both at 0.949. Support Vector Machine 
(SVM), however, showed the lowest performance, 
particularly in terms of accuracy (0.739) and recall 
(0.744), indicating that it struggled to correctly clas-
sify a significant portion of the instances. While 
SVM achieved a relatively high precision of 0.843, the 
lower recall resulted in a reduced overall F1 score of 
0.749.

c.	 Receiver operating characteristics (ROC) curve result
	 Figure 13 presents the ROC curves for XGBoost, RF, 

DT, and SVM, represented by green, orange, purple, 
and magenta curves, respectively. The Area Under 
the Curve (AUC) values for the ROC curves of all 

ensemble methods (XGBoost, RF, and DT) exceed 
the main diagonal, reflecting strong performance 
across all sediment types. Specifically, the average 
AUCs over sediment classes are 0.981 for RF, 0.980 
for DT, 0.979 for XGBoost, and 0.733 for SVM. How-
ever, the discriminative algorithm (SVM) demon-
strates poorer performance, particularly for clay and 
sand. The ROC curve for SVM on clay touches the 
main diagonal, while the curve for sand falls below 
the diagonal up to a false positive rate (FPR) of 0.3, 
suggesting weaker discrimination power for these 
classes.

The 3D apparent geological model
Based on the evaluation metrics in Table 3, the random 
forest algorithm proved to be the most suitable choice 
for modeling our data. Thus, we utilized the RF outcome 
to convert our 3D resistivity model into a 3D Apparent 
Geological Model (AGM), depicted in Fig. 14. In Fig. 14a, 
which presents a comprehensive overview encompass-
ing all sediment types (clay, sand, and gravel), the orange, 
green, and cyan colors denote clay, sand, and gravel, 
respectively. This figure reveals a predominance of clay 
layers in the western area, while in the eastern region 
near the tableland and hills, gravel layers dominate. For 

Fig. 12  Confusion matrix of all four ML classifiers used in the study

Table 3  Performance metrics for the machine learning models

SML algorithm Accuracy F1 Precision Recell

Random forest (RF) 0.952 0.952 0.952 0.952

Decision tree (DT) 0.950 0.950 0.950 0.950

XGBoost 0.949 0.949 0.949 0.949

Support vector Machine (SVM) 0.739 0.749 0.843 0.744
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Fig. 13  Receiver operating characteristic (ROC) curves
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a detailed examination of the distribution of each sedi-
ment type, individual representations are provided in 
Fig.  14b–d. These depictions illustrate that gravel layers 
primarily accumulate in the eastern area, extending to 
greater depths for both Changhua and Yunlin models, 
while clay and sand exhibit more uniform distribution 
across all areas, with clay notably concentrated near the 
coastal region on the western side. The resistivity range 
for each sediment type is approximately ≤ 59.98 Ωm for 
clay, 59.98 < ρ < 136.14 Ωm for sand, and ≥ 136.14 Ωm for 
gravel.

Discussion
This study has successfully increased the number of 
data points for 3D modeling from 62 to 386 across the 
Choushui River Alluvial Fan (CRAF), which spans 
approximately 2000 km2. This addition was achieved 
by integrating geophysical data sets, including Verti-
cal Electrical Sounding (VES), Transient Electromag-
netic (TEM), Normal Borehole Resistivity (NBR), and 
available borehole information, as detailed in Sect.  "The 

geoelectrical data". The significant addition of data points 
has led to a notable enhancement in our spatial coverage, 
thereby facilitating a more comprehensive understanding 
of the subsurface properties within the study area. Pre-
viously, with only 62 data points, the coverage for each 
point averaged approximately 32.26 km2 area. However, 
with the inclusion of 386 data points, the coverage per 
data point has reduced to approximately 5.18 km2. This 
decrease signifies a remarkable increase in coverage den-
sity by approximately 84.02%. The substantial increase in 
data density enables us to capture finer details and reso-
lutions in our analysis.

Furthermore, by integrating these data sets through 
the data harmonization technique, we effectively address 
two significant issues. First, this process aligns the resis-
tivity range across VES, TEM, and NBR data prior to 3D 
modeling. Logically, despite employing different meth-
ods, one would expect the data sets to exhibit a simi-
lar resistivity range within the same geographical area. 
However, Fig.  10a illustrates varying ranges among the 
data sets, but after applying this process, the resistivity 

Fig. 14  3D apparent geological model derived from the resistivity model: a all sediment types, b gravel, c sand, and d clay
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range becomes uniform, spanning from 1.02 Ωm to 2512 
Ωm (Fig.  10b). It is important to emphasize that data 
harmonization does not alter the trend of resistivity, as 
evidenced in Fig. 10. Here, the violin plots for each meas-
urement remain consistent, with their modals remaining 
similar both before and after this process. Second, this 
procedure proves beneficial for machine learning (ML) 
applications. Harmonization plays a pivotal role in miti-
gating bias and enhancing the performance of the ML 
algorithm by ensuring equitable contribution from all 
data sets (see Sect. "The resistivity data harmonization").

Regarding the 3D model, the utilization of Python-
based modeling and visualization tools has yielded signif-
icant advancements compared to results obtained from 
commercial software. For instance, consider the 3D resis-
tivity model illustrated in Fig. 11. A notable enhancement 
is observed in the delineation of the mesh boundary, 
which was predetermined by creating a polygon outlin-
ing the area of interest (refer to red line in Fig. 1, and the 
meshes in Fig. 7). This polygon acts as a constraint, effec-
tively excluding areas lacking data and thereby preventing 
over-interpolation in regions with no data points, result-
ing in a more realistic and precise model. This method 
proves to be both effective and adaptable. Should we 
need to extend the model to another target area, it simply 
entails creating a new polygon for that specific region.

Figure  11 illustrates that the majority of high resis-
tivity anomalies (depicted by yellow to red shades) are 
concentrated in the elevated regions of the eastern area, 
particularly within the proximal fan of the CRAF, which 
is southeast of Changhua and northeast of Yunlin. Inter-
estingly, high resistivity anomalies are observed near the 
upstream regions of all the rivers, including the Wu River 
in the north, the Choushui River in the central, and the 
Beigang River in the southern area. Upon further exami-
nation using available borehole data from the Geologi-
cal Survey and Mining Management Agency (GSMMA) 
Taiwan, it reveals that these high resistivity anomalies 
closely correspond to recharge areas by gravel layer. This 
finding is consistent with previous studies on groundwa-
ter sensitivity areas (see Fig.  3) conducted by GSMMA, 
which identified regions with high potential for ground-
water aquifers that mostly cover the proximal fan of the 
CRAF (GSMMA 2023). In contrast, low resistivity anom-
alies (depicted by green to blue shades) are primarily 
situated in the western area, particularly within the distal 
fan of the CRAF, near the Taiwan Strait, where clay–sand 
layers predominate.

The 3D resistivity model solely depicts the distribution 
of resistivity across the study area. Therefore, to derive a 
more comprehensive understanding, the ML algorithm 
is employed to transform this valuable data into a 3D 
Apparent Geological Model (AGM). The term “AGM” 

is chosen deliberately to highlight that this model is an 
approximation or representation of the subsurface geol-
ogy, rather than an exact replica. This acknowledges that 
the model relies on available data and interpretations, 
which may not capture all the complexities of the natu-
ral system. However, due to significant improvements 
in data coverage and enhancements in the 3D modeling 
process, the findings of this study provide a substan-
tial amount of subsurface knowledge that researchers 
can utilize for further investigation. This includes topics 
like land subsidence, groundwater resources, protection 
measures, and more.

After evaluating the performance of supervised 
machine learning (SML) techniques, it is evident that 
ensemble learning method such as random forest (RF) 
and extreme gradient boosting (XGBoost), as well as 
standalone decision tree learning, provide better out-
comes compared to discriminative learning method like 
Support Vector Machine (SVM). This is indicated by 
their high accuracy, F1 score, precision, and recall values, 
as presented in Table  3. Further analysis of the confu-
sion matrix in Fig. 12 reveals that while the SVM model 
demonstrates high accuracy in predicting gravel and sand 
classes, achieving rates exceeding 90% for both, its per-
formance in predicting clay appears comparatively lower. 
In the top-left cell, 55.8% of samples that are truly clay 
were correctly predicted as clay (true positive), while in 
the top-right cell, 44.2% of samples that are truly clay 
were incorrectly predicted as sand (false positive).

Upon examining the Receiver Operating Character-
istics (ROC) curve depicted in Fig. 13, it is evident that 
the performance of SVM models for both clay and sand 
is comparatively poorer when compared to other algo-
rithms. This is indicated by the fact that both curves 
touch the diagonal line. Ideally, a desirable ROC curve 
would closely hug the upper-left corner of the plot, 
reflecting high sensitivity (true positive rate) and low false 
positive rate across various threshold values. However, in 
this case, the ROC curve for clay touches the diagonal 
line around a false positive rate greater than 0.7 (x-axis) 
towards the end, indicating a high false positive rate for 
clay classification, particularly at higher thresholds. This 
suggests misclassification of a substantial number of 
negative instances as positive (clay). On the other hand, 
the ROC curve for sand dips below the diagonal line, par-
ticularly noticeable in the initial segment of the curve, 
roughly within the false positive rate range of 0–0.3. This 
observation indicates that the SVM model’s performance 
in classifying sand is notably inferior to random guessing 
at these specific thresholds. It suggests that the SVM abil-
ity to distinguish between sand and non-sand samples is 
considerably poorer than random guessing, particularly 
at lower threshold levels. Thus, the outcomes derived 
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from the SVM will not be utilized. In addition, the ROC 
curve illustrates that the DT curve, represented by pur-
ple, is slightly inferior to the RF and XGBoost (orange 
and green curves), with the RF curve performing the 
best. This finding aligns well with the outcomes of cross-
validation, where the RF exhibited the highest perfor-
mance among the algorithms evaluated. Hence, we have 
selected the results obtained from RF algorithm to trans-
form our 3D resistivity model into 3D AGM.

Overall, our observation from the 3D Apparent Geo-
logical Model (AGM) depicted in Fig.  14 indicates a 
correlation between resistivity anomalies and sediment 
types. Specifically, we found that low resistivity anoma-
lies are associated with the clay layer (Fig. 14d), medium 
resistivity corresponds to the sand layer (Fig.  14c), and 
high resistivity anomalies are highly correlated with the 
gravel layer (Fig.  14b). These correlations were deter-
mined based on the RF algorithm, with respective resis-
tivity ranges approximately ≤ 59.98 Ωm, 59.98 < ρ < 136.14 
Ωm, and ≥ 136.14 Ωm. Certainly, this outcome is consist-
ent with the 2D conceptual profile provided by GSMMA, 
illustrated in Fig.  2 (GSMMA 2023). It is apparent that 
the eastern region, proximal to the CRAF from Chu-
kou to Jiulong boreholes and situated upstream of the 

Choushui River, is predominantly characterized by gravel 
layers. Conversely, as expected, the coastal area on the 
western side, representing the distal fan of the CRAF 
from Haifeng to Fengrong boreholes and located down-
stream, primarily consists of clayey sand. Furthermore, 
the middle fan surrounding the Ganghou and Jiulong 
boreholes predominantly features a sandy clay layer. It 
is important to note that the 2D model in Fig. 2, which 
relies on widely spaced borehole data and manual inter-
pretation, only captures sediment distribution in the x 
and z directions, providing a simplified and coarse view 
of the subsurface. In contrast, our 3D model, built with 
denser data, offers a more detailed representation of 
sediment layers by capturing both lateral and vertical 
variability that is difficult to detect in 1D or 2D models. 
The 3D model also enables the identification of key fea-
tures that would otherwise remain hidden. For instance, 
as shown in Fig. 15, the 3D model clearly reveals a low-
resistivity anomaly strongly correlated with clay layers 
in the center of the subsidence area. This anomaly, diffi-
cult to visualize with 1D or 2D models, is well defined in 
3D, allowing for a clearer understanding of its bounda-
ries and spatial extent. This detailed view is essential for 

Fig. 15  High-resolution 3D resistivity model: a model boundary in magenta, b 3D resistivity model, and c cross section. The model features 
a resolution of 200 m × 200 m horizontally and 2 m vertically, with a depth of 500 m
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further investigation and provides a level of precision 
that 1D and 2D approaches cannot achieve.

We aware that our study faces certain limitations, par-
ticularly in the 3D modeling process due to the extensive 
area and large data set involved. Our computer system, 
equipped with 64.0  GB of RAM and an 11th Gen Intel 
Core i7-11,700 @ 2.50  GHz processor, encountered 
memory errors when we initially attempted to assign a 
finer mesh size of 250  m for horizontal (dx and dy) and 
2  m for vertical (dz). This was the finest resolution our 
system could handle without causing memory alloca-
tion issues. Any attempt to reduce the mesh size further 
resulted in errors. To address this, we divided the CRAF 
model into two regions (Changhua and Yunlin) and 
adjusted both the vertical and horizontal mesh resolu-
tion to maintain computational feasibility, as described in 
Sect. "The establishment of a 3D resistivity model".

Despite the unavoidable trade-off in model resolution, 
we can effectively address this challenge through two 
main approaches. First, employing high-performance 
computing resources, such as cluster computer systems, 
becomes essential for model execution. Second, by uti-
lizing the inherent flexibility and adaptability of our 
proposed methodology, we can customize the model to 
cover smaller targeted regions while enhancing both ver-
tical and horizontal resolutions. For instance, we have 
constructed a finer 3D model within the Critical Area for 
Land Subsidence in the CRAF, particularly in the Taiwan 
high-speed rail area (Chen et  al. 2021; Hsu 1998). The 
model dimensions extend to dx and dy of 200  m each, 
with a dz of 2 m. By integrating additional Magnetotellu-
ric (MT) and surface Electrical Resistivity Imaging (ERI) 
data specific to the study area, the model depth has been 
expanded to 500  m below the subsurface, as depicted 
in Fig.  15. The delineation of the 3D model’s boundary 
within the specified region is highlighted in magenta on 
the map (Fig. 15a), accompanied by corresponding visu-
alizations of the 3D resistivity model and its cross section 
in Fig.  15b, c. The enhancements applied to this model 
have effectively addressed the previously outlined chal-
lenge. In addition, it is worth noting that creating multi-
ple models with higher resolutions and combining them 
for large-scale studies is also feasible.

Another concern of this study is the inherent strati-
graphic uncertainty and spatial variability associated 
with deterministic boundaries. The model assumes 
fixed boundaries, which may not fully capture subsur-
face variability due to data sparsity and geological het-
erogeneity. Stratigraphic uncertainty arises from factors 
like resistivity variability, geophysical method limita-
tions, and uneven data distribution. Resistivity measure-
ments are affected by environmental noise and electrode 
limitations, leading to potential errors. In addition, 

interpolation strategies like Radial Basis Function (RBF) 
smooth the data but may generalize subsurface features, 
further contributing to uncertainty. To address this, 
we incorporated multiple data sets (VES, TEM, bore-
hole data) to reduce uncertainty and better constrain 
the model. However, variability remains in data-sparse 
regions. Future studies could integrate more direct meas-
urements, such as new borehole data, to improve bound-
ary accuracy.

Conclusions
This study effectively outlines the procedure for build-
ing a 3D Apparent Geological Model (AGM) through 
the integration of multi-resistivity data, particularly 
in the Choushui River Alluvial Fan (CRAF) area. It 
employs statistical methods, machine learning tech-
niques, and Python-based modeling and visualization 
tools, signifying a shift from conventional methodolo-
gies to more advanced approaches. By integrating mul-
tiple geophysical data sets and available borehole data, 
we increased the spatial coverage from 62 to 386 points 
across the study area, achieving an 84.02% increase in 
coverage density. Our analysis harmonized all these 
data sets and established a consistent range of resistiv-
ity values of log 0.01 Ωm to log 3.4 Ωm, prior to 3D 
modeling.

Furthermore, the assessment of supervised machine 
learning (SML) through confusion matrix analysis, 
evaluation metrics, and receiver characteristic curves 
(ROC) underscored the effectiveness of ensemble learn-
ing methods, particularly highlighting the random forest 
algorithm as the top performer among the various algo-
rithms evaluated to transform the 3D resistivity model 
into 3D AGM. The 3D AGM unveiled distinct resistiv-
ity anomalies correlated with sediment types, with low 
resistivity anomalies associated with clay layers (≤ 59.98 
Ωm), medium resistivity corresponding to sand lay-
ers (59.98 < ρ < 136.14 Ωm), and high resistivity anoma-
lies highly correlated with gravel layers (≥ 136.14 Ωm). 
Gravel layers were predominantly found in the proximal 
fan, situated in the eastern area of the CRAF. Conversely, 
the distal fan, located in the western coastal area, mostly 
consisted of clayey sand. In addition, the middle fan pri-
marily comprised sandy clay layers. Despite encountering 
challenges associated with 3D modeling resolution due to 
memory constraints, our study proposes effective solu-
tions to mitigate this issue. These strategies involve utiliz-
ing high-performance computing resources and adjusting 
models to focus on smaller target areas while increas-
ing the vertical and horizontal resolutions. By combin-
ing multiple smaller models, we were able to cover the 
larger-scale study area.
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In conclusion, the results of this study provide a valu-
able 3D model of subsurface conditions, which can serve 
as a useful resource for researchers undertaking further 
investigations that necessitate a comprehensive under-
standing of the subsurface environment.
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